

PHIN -214 Non-Confidential Presentation November 2022

Key points

- **Developing In-Home Therapy**
- Two lead programs:
- ▶ PHIN-214
 - SC drug for Refractory Ascites
 - Phase 1b Clinical Trial in US in cirrhotic patients
- ▶ PHIN-1314
 - SC Immuno-Oncology drug for Solid Tumors
 - Aim to submit IND in 2023

Two Products with 6+ Indications

Clinical Goals for the Use of PHIN-214

- Long term SC therapy at home
- Delay progression to HRS via slowing the hemodynamic deterioration towards loss of kidney perfusion
- Decrease ascites formation via reduction of portal pressure that drives ascites formation
- Reduce risks and increase quality of life by reduction in clinical visits and the need for paracentesis procedure

PHIN-214 for Portal Hypertension with Refractory Ascites

PHIN-214 is a derivative of Terlipressin, effective at controlling hemodynamic imbalance

- New Chemical Entity with a broader therapeutic index providing higher safety
 - Partial VIa agonist providing milder vasopressor activity allowing for subcutaneous administration with reduced risk of ischemia or injection site reaction
- Longer acting than Terlipressin*
 - Single subcutaneous injection provides a sustained PK, and will enable long term therapy at home instead of IV infusion

PHIN-156 is an active metabolite of PHIN-214, also a partial V1a agonist

*Terlipressin is an IV therapy for bleeding esophageal varices and HRS in EU and Asia, and for HRS in US

Mechanism of Action Target Indication(s) Compensated Cirrhosis (~1-1.5 M in US) **Liver Cirrhosis** ↑ Hepatic Resistance **Decompensated Cirrhosis Ascites y**↑ Portal Hypertension (~500K patients) **PHIN-214** x↑Splanchnic Blood Pooling (V1a Partial Agonist) **Refractory Ascites** (Current Clinical Trial Indication) X Arterial blood pressure Asia X ⁻ull agonist, In US, EU **x**↑ Activation of RAAS Hepatorenal Syndrome (HRS-CKD) Terlipressin Hospitalized **x**↑Retention of Na + water HRS-AKI (or Esophageal Variceal Bleed) **x**↑ Ascites formation **Reversal, Liver Transplant, or Death**

PHIN-214 and PHIN-156 are both partial V1a agonists while Terlipressin is a full V1a agonist through Lysine Vasopressin (LVP)

Unit (nM)	Human V1a EC50	Human V1a Highest agonist effect (% of AVP)	Human V2 EC50	Human V2 Highest agonist effect (% of AVP)	Ratio of EC50 of V1a to V2 (i.e., preference for V2)
LVP	1.65	92.09	0.01	96.16	165 fold
PHIN-156	2.05	41.02	0.26	98.69	~8 fold
PHIN-214	45.89	28.18	4.93	87.66	~9 fold

This work was funded by NIH grant DK103553

PHIN-214 has 10X higher therapeutic index than Terlipressin based on observations in SD Rats

	Terlipressin	PHIN-214		
	mg/Kg i.v.*	mg/Kg s.c.		
NOEL Highest dose with no observable	0.005	0.0015		
paleness effect or vasoconstriction	(N/A)	(N/A)		
NOAEL Highest Dose with no observable	0.05	0.15		
adverse effect or lethargy but with paleness or vasoconstriction	(1.3 <u>+</u> 0.05 hrs, n=3)	(5.79 <u>+</u> 0.08 hrs; n=3)		
(paleness duration, hrs +/- SD)				
Therapeutic Index NOAEL/NOEL	~10	~100		
* Note: Terlipressin is currently administered i.v. since s.c. administration causes local vasoconstriction and necrosis whereas PHIN-214, a partial agonist, does not cause local vasoconstriction even if administered s.c.				

This work was funded by NIH grant DK103553

PHIN-156 has longer presence in the blood than LVP based on PK study in Rats

Note: PHIN-156 has over 10-fold higher plasma bioavailability than LVP (active metabolite of terlipressin)

This work was funded by NIH grant DK103553

PHIN-214 increases MAP in a dose response manner that is needed to increase Kidney perfusion

This work was funded by NIH grant DK103553

PHIN-214 showed dose dependent diuretic and sodium excretion effect in rats Superior to that of Terlipressin

- BDL rats are more responsive at the same dose (80 µg/kg), compared to healthy rats
- Vla receptor response to PHIN-214 overwhelms V2 receptor antidiuretic response.
 - i.e., Vla overwhelm V2 effect as dose increases without causing skin necrosis (from Tox. Study).
 - V2 is mainly in kidney and has limited response capacity whereas V1a is in the entire vasculature and has higher capacity to respond to PHIN-214

Total volume over 8 hours

This work was funded by NIH grant DK103553

P<0.01 **P<0.0001

PHIN-214 is more effective in reducing Portal Vein Pressure than Terlipressin

PHIN-214 at 12 ug/kg S.C. is more effective than Terlipressin at 41 ug/kg I.V. in providing a sustained decrease in portal pressure in Bile Duct Ligated Rats

Percent decrease (%) in Mean Portal Vein Pressure (MPVP) from BDL baseline prior to treatment						
	Dosing (µg/kg)	Time (hr)				
lest Article		0	1	4	7	20
BDL PHIN-214 n=4	12	0	5 (7.3 9)	-30.5 (7.12)	-10.5 (14.79)	-29.75 (5.0)
BDL Terlipressin n=4	41	0	-23 (21.0)	11.3 (20.3)	10.8 (7.7)	7.3 (13.03)

Data Displayed as Percent Change (SEM)

Day 13 MPVP: BDL = 22.2 mmHg (SEM:6.45); Sham = 14.08 mmHg (SEM:1.51)

This work was funded by NIH grant DK103553

PHIN-214 Potential Advantages over Terlipressin

Parameter	Terlipressin/LVP	PHIN-214/156	
Administration	IV, bolus or infusion	Subcutaneous	
Location	Clinical setting	Home	
Half-life	Short: minutes	Long: hours	
Therapeutic index	Narrow	Broad	
Receptor	Full V1a agonist	Partial V1a agonist	
Ischemia	High risk	Low risk	

Single Ascending Dose (SAD) Study, Phase 1

- Child-Pugh A and B patients
- Primary objective: safety & tolerability, Maximum tolerated dose (MTD)
- Secondary objective: pharmacokinetics (PK)
- Exploratory objectives: MAP, urine output, sodium excretion
- Two sites currently recruiting:
 - Arizona Liver Health, Phoenix
 - Mayo Clinic, Rochester MN

Phase 1 Study: Inclusion Criteria

Type of Participant and Disease Characteristics

- Males & Females, Ages 18-70
- BMI 18-40
- eGFR by CKD-Epi > 60 ml/min/1.73 m²
- Cardiovascular
 - Resting heart rate 60-100 bpm
 - SBP 90-140 mmHg; DBP 60-90 mmHg
- Cirrhosis: Child-Pugh A or B
 - Biopsy or Fibroscan
 - Etiologies of cirrhosis include:
 - Alcohol, NASH, hepatitis B, hepatitis C
 - Primary Biliary Cholangitis (PBC), Primary Sclerosing Cholangitis (PSC)

Phase 1 Study: Exclusion Criteria

Barriers to Recruitment To Date

- Previously limited to Child-Pugh A patients
- Hypertension and anti-HTN medications (beta blockers ok)
- Platelet count <50x10⁹/L (was 100x10⁹/L)
- Hepatic encephalopathy ≥ grade 1
- Respiratory disease: asthma, COPD
- Anti-depression medications (Zoloft/Sertraline ok)
- Fecal occult blood

Note: this list is a subset of the Exclusion Criteria

We look forward to working with you! Thank you!

ContactUs@pharmain.com | +1 206 568 1450

Akiko Nishimoto-Ashfield (西本晶子), Associate Director, BD Elijah Bolotin, President/CEO