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A B S T R A C T   

From its identification and isolation in 1954, arginine vasopressin (AVP) has attracted attention, not only for its 
peripheral functions such as vasoconstriction and reabsorption of water from kidney, but also for its central 
effects. As there is now considerable evidence that AVP plays a crucial role in feeding behavior and energy 
balance, it has become a promising therapeutic target for treating obesity or other obesity-related metabolic 
disorders. However, the underlying mechanisms for AVP regulation of these central processes still remain largely 
unknown. In this review, we will provide a brief overview of the current knowledge concerning how AVP 
controls energy balance and feeding behavior, focusing on physiological aspects including the relationship be-
tween AVP, circadian rhythmicity, and glucocorticoids.   

1. Introduction 

Arginine vasopressin (AVP), also known as antidiuretic hormone, is a 
hormone that is synthesized as a peptide prohormone, primarily in hy-
pothalamic neurons. AVP is composed of 9 amino acids, Cys-Tyr-Phe- 
Gln-Asn-Cys-Pro-Arg-Gly− CONH2, cross-linked with a Cys-Cys disulfide 
bond in a ring structure. Historically, Resnik and Geiling first reported 
that pituitary extracts could affect the heart by stimulation of the vagal 
nerves through the cardio-inhibitory center and by direct action on the 
myocardium in 1925 [1]. In 1929 the word “vasopressin” first appeared 
in an article by David and Vareed [2], yet it wasn’t until 1954 that AVP 
was isolated and identified by du Vigneaud et al. [3]. During those de-
cades, most of the AVP research focused on peripheral effects such as 
vasoconstriction, reabsorption of water from kidney, and regulating 
vagal nerve tone [4,5]. Since the cloning and characterization of three 
different types of AVP receptors in the 1980s [6–8], AVP has started 
attracting more attention as a “central” affecting neuropeptide as well as 
a peripheral peptide. 

In a broad range of vertebrate and invertebrate species, the structure 
of AVP is highly conserved. For example, most vertebrate classes except 
mammals possess the nine amino acid peptide form, arginine vasotocin 
(AVT) which is a homologue of AVP. AVP differs only in position 3, with 
Ile being substituted for Phe [9]. AVT receptor as well is also highly 
similar to AVP receptor [10]. The structural conservations are paralleled 
with highly similar neural distribution of AVT and AVP, indicating 

evolutionary conservation in structure, expression patterns, and func-
tion for this ancient molecule. 

AVP, which is produced in the hypothalamus, travels down axons 
terminating in the posterior pituitary, where it is released from vesicles 
into the systemic circulation in response to extracellular hyper-
osmolality. AVP is also released directly into the central nervous system 
(CNS) by somato-dendritic release [11]. Many ambitious studies have 
unveiled critical roles of centrally released AVP in various kinds of be-
haviors, including social recognition [12,13], pair bonding [14,15], 
aggression [15,16], and feeding behavior [17–19]. 

In addition, AVP also affects hypothalamic-pituitary-adrenal (HPA) 
axis. AVP released from terminals of parvocellular neurons of the par-
aventricular nucleus (PVN) stimulates adrenocorticotropic hormone 
(ACTH) synthesis and thus modulates glucocorticoid (GC) release from 
adrenal gland [20]. GC are known to have an orexigenic action by 
synaptic changes and altered excitability of the melanocortin system 
[21]. Furthermore, AVP produced in the suprachiasmatic nucleus (SCN) 
plays a crucial role in forming circadian rhythmicity [22,23], which may 
also be important for feeding regulation. 

Taken together, although the AVP produced in each nucleus has 
different physiological roles, synchronization of AVP synthesis, trans-
port, and release, both in the systemic circulation and in the CNS, may 
be essential for optimal feeding regulation and maintenance of energy 
balance. In this review, we aim to explore the basic roles of AVP, 
especially on feeding behavior and energy balance. We also provide 
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integrated insights into AVP and the circadian rhythm, as well as our 
viewpoints about the relationship between AVP and GCs revealed in 
recent studies. 

2. Distribution and receptors of AVP 

In the mammalian brain, AVP is predominantly synthesized in the 
hypothalamus; magnocellular vasopressinergic neurons of the PVN, 
supraoptic nucleus (SON), parvocellular vasopressinergic neurons of the 
PVN, and accessory nuclei located between the SON and PVN [24]. In 
the PVN, AVP is produced in parvocellular neurons projecting to the 
median eminence, brainstem autonomic nuclei, and spinal cord [25,26]. 
In the SCN, AVP is produced in the shell, which is the dorsomedial part 
of the SCN [27]. AVP is also expressed in the medial amygdala, bed 
nucleus of the stria terminalis, diagonal band, dorsomedial hypothala-
mus, locus coeruleus, nucleus of the solitary tract and dorsal horn [28, 
29]. In addition, retinal cells in the eye have the ability to synthesize 
endogenous AVP, along with V1a and V1b receptor co-expression [30]. 

There are three types of known AVP receptors; V1a, V1b (also called 
V3), and V2, all of which are formed of heptahelical G protein-coupled 
receptors. Each receptor has relatively homologous amino acid se-
quences, however, their expression pattern is different among the tissues 
and organs. Regions of expression and their putative functions involved 
in metabolism are listed in the table (Table 1). 

V1a receptor is expressed in the vascular smooth muscle cells and 
CNS. V1a expressed in the vascular muscle cells is responsible for the 
vasoconstriction [31], whereas that expressed in the CNS influences a 
wide variety of brain functions, including pair-bonding behavior [15, 
32], social interaction and social recognition [33,34], aggression [35, 
36], maternal behavior [37], anxiety-like behavior [13], depression 
[38], and maintaining circadian rhythm [39]. The distribution of V1a 
receptor, investigated by in situ hybridization histochemistry, was 
consistent with a role for AVP in higher cognitive functions, including 
the prefrontal, cingulate, pyriform, and entorhinal cortex, as well as the 
presubiculum and mamillary bodies in rhesus monkeys [40]. V1a re-
ceptor binding and mRNA were also detected in the amygdala, bed 
nucleus of the stria terminalis, lateral septum, hypothalamus and the 
brainstem [40]. 

V1b receptor, which is expressed in the anterior pituitary, modulates 
the secretion of ACTH [41]. V1b receptor is also expressed in multiple 
brain regions, including pituitary corticotropes, olfactory bulb, caudate 
putamen, septum, cerebral cortex, hippocampus, hypothalamus, and 
cerebellum, as well as peripheral tissues, including kidney, thymus, 
heart, lung, spleen, uterus, and breast in rats [42,43]. 

V2 receptor is mainly expressed in the renal distal tubules and col-
lecting ducts, and stimulates water reabsorption [44]. Sato et al., have 
reported that V2 receptor is also expressed in AVP neurons in the CNS 
[45]. V2 receptor in AVP neurons is considered to act as an autocrine 
signal, thus facilitates volume regulation of AVP neurons themselves. In 
the CNS, V2 receptor is expressed in the choroid plexus, and the neurons 
of the hippocampus and granular layer of the cerebellum, although the 
expression pattern was different depending on the age of the rats [46]. 
V2 receptors in the CNS may be associated with development [46], 
aggression [47], anxiety [48], thermoregulation [49], alcohol prefer-
ence [50], and chronological adaptation [51]. 

In rats, a sex difference of AVP neurons and their dendrites was re-
ported. Males had significantly more AVP-immunoreactive neurons in 
the bed nucleus of the stria terminalis and denser projections from this 
nucleus to the lateral septum, lateral habenular nucleus, and peri-
aqueductal central gray than females [52]. Denser AVP-immunoreactive 
fiber networks were also found in the medial amygdaloid nucleus and 
ventral hippocampus, which receives its input from the medial amyg-
daloid nucleus [52]. Thus, in addition to AVP levels and the expression 
levels of its receptors, these sex differences should be considered when 
considering the function of AVP. 

The signal transduction pathways of these receptors are 

characteristic. When the ligand, AVP, binds to V1a and V1b receptors, 
phospholipase C is activated via the Gq coupled protein, followed by 
upregulation of inositol 1, 4, 5- trisphosphate and diacylglycerol. 
Cellular or neuronal activities are thus regulated by virtue of the in-
crease of intracellular calcium concentration and protein kinase C. On 
the other hand, in the V2 type receptor, adenylate cyclase is activated 
via Gs coupled protein [53]. Cellular or neuronal activities are thus 
regulated by cyclic AMP-dependent protein kinase. 

Oxytocin, another peptide also produced in the magnocellular divi-
sion of the SON and PVN, can also bind to AVP receptors with reduced 
affinity, and vice versa [54]. In addition, the ability of AVP to bind to the 
receptors could vary between the different organs, which may also 
modified by pathophysiological conditions. Thus, we should take into 
account which receptor plays a principal role for the specific behavior 
under each specific condition. 

3. AVP and food intake 

Recent views suggest that AVP reduces feeding in mammals. In the 
1990s, Meyer and colleagues revealed that AVP injected intraperitone-
ally into pygmy goats reduced food intake in a dose dependent manner, 

Table 1 
Distribution of AVP receptors and their putative functions.  

CNS Expressed region Putative function 

V1a 

Prefrontal cortex Pair-bonding behavior 
Cingulate cortex Social interaction 
Pyriform cortex Social recognition 
Entorhinal cortex Aggression 
Presubiculum Maternal behavior 
Mamillary bodies Anxiety-like behavior 
Amygdala Depression 
Bed nucleus of the stria terminalis Maintaining circadian rhythm 
Lateral septum  
Hypothalamus 
Brainstem 

V1b 

Pituitary corticotropes Development 
Olfactory bulb Aggression 
Caudate putamen Anxiety 
Septum Thermoregulation 
Cerebral cortex Alcohol preference 
Hippocampus Chronological adaptation 
Hypothalamus  
Cerebellum 

V2 

AVP neurons in the hypothalamus 

Volume regulation of AVP neurons 
Choroid plexus 
Hippocampus 
Granular layer of the Cerebellum  

Peripheral Expressed region Putative function 

V1a 

Lung Vasoconstriction 
Liver Lipolytic action 
Kidney Enhance insulin sensitivity 
Smooth muscle cells  
White adipose tissue 
Brown adipose tissue 

V1b 

Kidney Anti-lipolytic action 
Thymus Glycogenolysis 
Heart Increase glucagon secretion 
Lung Increase insulin secretion 
Spleen 

Suppress insulin sensitivity 

Uterus 
Breast 
Liver 
Pancreas 
White adipose tissue 

V2 

Renal distal tubules Water reabsorption 
Renal collecting ducts 

Insulin sensitivity 

Heart 
Liver 
Muscle 
White adipose tissue 
Brown adipose tissue  

M. Yoshimura et al.                                                                                                                                                                                                                            



Peptides 142 (2021) 170555

3

specifically by reducing the size of the first meal and increasing the first 
inter-meal interval, [55]. Reduced food intake after intraperitoneally 
administered AVP was also observed in adult male rats [56]. These 
hypophagic phenomenon were, at least in part, mediated by α1-adren-
ergic receptors [56,57]. While hunger usually occurs in the absence of, 
or prior to, absorption of nutrients, only some of the signals that inhibit 
food intake can be associated with caloric homeostasis as food intake 
will be decreased after administration of nauseogenic chemical agents 
[58–60], or dehydration [61,62]. 

Dehydration-induced anorexia involves an important physiological 
adaptation that limits the intake of osmolytes from food and helps 
maintain the integrity of fluid compartments [62]. Watts and colleagues 
found that rats develop profound anorexia from dehydration when given 
hypertonic saline (2.5 % NaCl) instead of water [63]. They also showed 
that, in dehydrated rats in comparison with euhydrated rats, gene 
expression of neuropeptide Y (NPY) in the arcuate nucleus was signifi-
cantly increased, CRH in the PVN was markedly decreased, and CRH in 
the lateral hypothalamic area was significantly increased [61]. Gene 

Fig. 1. Chemogenetic activation of AVP neurons using transgenic rats. 
(A) Construction strategy of an AVP-hM3Dq-mCherry transgenic rat line are shown. (B) Robust Fos induction was observed 90 min after intraperitoneal (i.p.) in-
jection of clozapine-N-oxide (CNO, 1 mg/kg) in the SON and PVN. Circadian activity (C) and circadian core body temperature (D) were significantly disrupted after 
chemogenetic activation of AVP neurons at the start of the dark phase. Cumulative food intake (E), water intake (F), and urine volume (G) were significantly 
suppressed after chemogenetic activation of AVP neurons. The figure was modified from Sci. Rep. 7, 2017 [17]. 

M. Yoshimura et al.                                                                                                                                                                                                                            



Peptides 142 (2021) 170555

4

expression of AVP is also upregulated as a result of the hyperosmotic 
state. Indeed, 2% salt-drinking rats had increased AVP and V1bR mRNAs 
in the SON, PVN, and in the choroid plexus compared to rats maintained 
on water [64]. Taken together, these findings lead to the hypothesis that 
increased AVP could be involved in an anorexigenic effect in 
dehydration-induced anorexia. 

The anorexigenic effect of AVP seems to be largely mediated through 
V1a receptor. Ikemura and colleagues demonstrated that food intake 
suppression in male rats after intraperitoneally administered AVP was 
attenuated by simultaneous injection of a peptide antagonist for V1 re-
ceptor, but not for V2 receptor [65]. Orexin, which is a critical peptide 
for sleep/wake cycles, is also involved in feeding behavior. AVP directly 
induced depolarization and an inward current in orexin neurons, while 
these were inhibited by a V1a receptor selective antagonist and were not 
observed in V1aR knockout mice [66]. NPY, an orexigenic peptide 
produced in the arcuate nucleus, potently increases food intake, and 
simultaneously stimulates arginine-vasopressin (AVP) secretion in the 
brain. The orexigenic effect of NPY was enhanced in V1a receptor 
knockout mice [67]. In WT mice, NPY-induced orexigenic effect was 
enhanced by intracerebroventricular administration of an antagonist for 
V1a receptor, but not for V1b receptor, an important role in blunting the 
orexigenic effect of NPY through a V1a mediated mechanism [67]. 

Similar results were obtained from the studies of avian AVT V1a 
receptor, which is highly homologous to mammalian AVP V1a receptor, 
and is associated with the regulation of food intake in chickens by 
modulating neurons that synthesize and release anorexigenic neuro-
peptides [68,69]. 

Recently, Pei and colleagues have demonstrated that activation of 
endogenous AVP in the PVN reduced food intake by using designer re-
ceptors exclusively activated by designer drugs (DREADDs) in mice 
[18]. We have gone on to show that activation of AVP expressing neu-
rons decreased food intake and disturbed circadian rhythmicity of core 
body temperature and locomotor activity, by using a transgenic rat line 
that expresses excitatory DREADDs specifically in AVP neurons (Fig. 1) 
[17]. Decreased food intake observed in this study may be driven by AVP 
in the SON and PVN as well as by the SCN because AVP producing 
neurons in all these nuclei were activated. Although which of these 
nuclei was crucial for anorexigenic action of AVP remains unknown, we 
speculated that AVP produced in the SON and PVN may affect food 
intake directly, and AVP in the SCN may affect food intake indirectly by 
altering circadian rhythmicity. The results of these studies support an 
important role for AVP as an anorexigenic molecule. 

In human, a strong association was observed between the RS3 mi-
crosatellite polymorphism in the V1a receptor promoter region and 
eating behavior [70]. The patients with RS3 microsatellite poly-
morphism in the V1a receptor promoter region appeared to attempt 
severe dietary restriction for weight loss purposes. The result suggested 
that aberrant V1a receptor expression is one of the potent factors that 
drives abnormal eating behavior. 

In practical terms, not only AVP and/or its receptors, but also higher 
brain function is also important for forming eating behavior in humans. 
Given that higher brain function is much more advanced in humans 
compared to rodents, it is indeed difficult to explain the anorexigenic 
action of AVP in humans only from the aspect of the protein itself or 
from its receptors. 

4. AVP and metabolism 

AVP also modulates diverse metabolic functions, such as cellular 
growth and proliferation [71–73], protein turnover [74], lipid meta-
bolism [75,76], and glucose homeostasis [77,78]. Variation of free fatty 
acid (FFA), glucose and insulin levels are monitored by metabolic 
sensing neurons located in the hypothalamus along with other gut 
hormones to alter their activity and act both on central and peripheral 
mechanisms that are involved in regulation of food intake. In this sec-
tion, we focus on the function of AVP and AVP receptors that are 

important for regulating body energy balance. 

4.1. AVP and lipid metabolism 

AVP mediates lipid metabolism via a wide range of central and pe-
ripheral actions. AVP neurons in the PVN stimulate sympathetic nerve 
activity via axonal projections to the rostral ventrolateral medulla 
(RVLM), mediated via V1a receptor [79,80]; a mechanism with poten-
tial impact upon lipid metabolism in liver or adipose tissue. Although, 
specific mechanism of AVP should be further explored, there are some 
studies that reported sex difference regarding lipid and glucose meta-
bolism. Indeed, lipoprotein profiles were altered in women after 
menopause, and this could be partially reversed by exogenous hormone 
replacement therapy [81] demonstrating an influence of gonadal hor-
mones in regulating the lipoprotein profile. 

AVP appears to have both lipolytic and anti-lipolytic actions 
depending on the experimental condition. For example, under starved 
state, constant infusion of AVP induced fatty acid release from adipose 
tissue by a direct anti-lipolytic effect in adipose tissue in rats [82], 
indicating that the primary metabolic effect of AVP in the starved state 
was due to decreased supply of non-esterified fatty acids to the liver in 
vivo. On the other hand, pitressin, a synthesized form of AVP, induced 
lipolysis in rat adipose tissue in vitro [75]. Küchler and colleagues 
showed that uncoupled protein-1 (UCP-1) expression was induced after 
acute exposure of AVP in differentiated brown adipocytes [83], sug-
gesting that AVP has adipotropic effect, though the reason for these 
discrepant results remain unclear. 

Actions of AVP on lipid metabolism are mediated through V1a and 
V1b receptors directly or indirectly. In adipose tissue, V1a receptor is 
expressed both in white adipose tissue (WAT) and brown adipose tissue 
(BAT), while V1b receptor is only expressed in WAT [84]. Hiroyama and 
colleagues demonstrated in an elegant way that serum carnitine and 
acylcarnitines were significantly increased and lipid metabolism was 
enhanced in response to isoproterenol by using V1a receptor-deficient 
mice [84]. These results indicate that beta-oxidation was promoted in 
these mice and that AVP could modulate the lipid metabolism by an 
anti-lipolytic action via the V1a receptor. They also demonstrated the 
function of V1b receptor on lipid metabolism by using V1b 
receptor-deficient mice [85]. The effect of V1b receptor on lipid meta-
bolism seems to be opposite to that of V1a receptor. V1b 
receptor-deficient mice had, with exhibiting lower body weight, greater 
epididymal fat mass than wild type mice. Isoproterenol-stimulated 
lipolysis in differentiated adipocytes was significantly decreased in 
these mice with impaired insulin secretion and low blood glucose level. 
These results indicate that insulin sensitivity was increased as a 
compensatory mechanism, thus consequently anti-lipolytic effect could 
be induced in V1b receptor-deficient mice. From these studies, it is 
considered that lipid metabolism is altered by AVP, by modulating in-
sulin signaling via V1a and V1b receptors. V1a receptor seems to be 
involved in exacerbating glucose tolerance and leading lipolytic action 
of AVP, while V1b in improving glucose tolerance and leading 
anti-lipolytic action of AVP [84,85]. However, glucose tolerance was 
impaired in V1a and V1b receptor double deficient mice [86]. These 
results indicate that AVP may exhibit anti-lipolytic effect rather than 
lipolytic effect in vivo. 

In addition, AVP is involved in thermoregulation as one of the 
antipyretic hormones in peripheral tissue as well as in the CNS [87–89]. 
Since metabolic rate will be suppressed under hypothermic state [90, 
91], anti-lipolytic effects of AVP may be induced by hypothermia, an 
indirect action of AVP, as well as a direct action of AVP. 

4.2. AVP and glucose metabolism in rodents 

AVP appears to induce hyperglycemia, yet also improve glucose 
tolerance in animal experiments. Acute injection or sustained infusion of 
high dose of AVP induced a transient rise in blood glucose concentration 
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in animals and humans [77,82,92]. These may be the results of an 
enhanced glycogenolysis induced by increasing glycogen phosphorylase 
via V1a receptor in the liver [77,93] and an increased glucagon secretion 
via V1b receptor from the alpha cells of the pancreas [94–96]. Glyco-
genolysis could also be stimulated by indirect action of AVP on vaso-
constriction, followed by hypoxia in the liver [97]. In contrast, AVP 
increases insulin secretion via V1b receptor from the beta cells of the 
pancreas [95,98], though the dosage of AVP on its secretion is different 
from that in alpha cells [99]. The secretion of glucagon or insulin by 
administration of AVP depends on the conditions of glucose concen-
tration; insulin secretion is highly induced by AVP under high glucose 
condition, while glucagon secretion is much increased by AVP under low 
glucose condition [99]. Since increased glucose concentration could 
stimulate intracellular concentration of calcium in beta cells in the 
pancreas, AVP can act as a positive modulator for glucose-stimulated 
insulin release [99,100]. AVP is reported to be expressed in the 
pancreas by RT-PCR [101], suggesting that not only circulating AVP but 
also possible paracrine function of AVP produced in the pancreas affects 
glucagon and/or insulin secretion. 

A rise in blood glucose induced by an acute injection of AVP was 
prevented by pretreatment of V1a receptor antagonist, but was 
increased by treatment with V1a receptor agonist in 6 h fasted rats 
[102]. In these rats, V1b agonist nor antagonist did not change blood 
glucose level induced by acute injection of AVP, however, V1b receptor 
antagonist enhanced the fall in glucagon secretion after AVP injection 
[102]. 

AVP may enhance insulin sensitivity via the V1a receptor and sup-
press sensitivity via the V1b receptor. Considerable knowledge about the 
role of AVP in glucose homeostasis has been obtained from ambitious 
studies using animal models of V1a and/or V1b receptor-deficient mice. 
Impaired glucose tolerance was observed in mice lacking V1a receptor, 
without affecting plasma insulin levels [103]. Interestingly, overt 
obesity was induced by high-fat diet in V1a receptor-deficient mice 
compared to WT mice [103], which may indicate a possible involvement 
of V1a receptor on energy accumulation and/or expenditure as well as 
glucose homeostasis. Since AVP directly regulates aldosterone secretion 
through the V1a receptor [104], lower plasma aldosterone levels could 
contribute to a lower response to water retention from kidney. In V1b 
receptor-deficient mice, under fasted state, plasma insulin, glucagon, 
and blood glucose were decreased compared to wild type mice [105]. 
AVP effect on insulin release was ablated in pancreatic islets derived 
from V1b receptor deficient mice with lower plasma glucose level [106], 
suggesting that insulin hypersensitivity is present under V1b receptor 
deficient condition. In addition, since plasma ACTH was decreased in 
V1b receptor-deficient mice in comparison with wild type mice [41], 
HPA axis modulation could also be involved in altered glucose homeo-
stasis in these mice. The glucose homeostasis phenotype of V1a and V1b 
receptor-double-deficient mice is similar to that of V1a receptor defi-
cient mice [107]. 

Brattleboro rats, which genetically lack AVP, are used to delineate 
the global action of AVP on glucose homeostasis. These rats showed 
enhanced glucose tolerance instead of impaired glucose tolerance [107]. 
The discrepancy of these results obtained from V1a and V1b 
receptor-double-deficient mice and Brattleboro rats may indicate that 
there is possible involvement of V2 receptor as well as V1a and V1b 
receptors in regulating glucose homeostasis in vivo. V2 receptor is 
expressed in many different insulin sensitive tissues, including heart, 
liver, muscle, WAT, and BAT [105]. Together, these may support the 
hypothesis that V2 receptor signaling may also, at least partially, be 
involved in glucose homeostasis by altering not only the regulation of 
water balance but also insulin signaling. 

Taveau and colleague have demonstrated that, in Zucker fatty rats, 
which genetically have a mutation in the leptin receptor gene, fasting 
hyperglycemia as well as hyperinsulinemia was induced after chronic 
intraperitoneally injection of AVP for 4 weeks [108]. Hyperglycemia 
induced by chronic AVP infusion was diminished by concomitant 

treatment with V1a receptor antagonist, whereas, insulin levels were the 
same as the group that had normal AVP concentration. Interestingly, in 
their study, low AVP induced by high water intake did not improve 
glucose tolerance in Zucker rats, although they did have a lower inci-
dence of liver steatosis. Despite the lack of a detailed elucidation of the 
underlying mechanism, these findings have demonstrated that there 
might be a causal relationship between the AVP-hydration axis and 
metabolic adverse effects. 

Based on the results from animal experiments, although AVP induces 
hyperglycemia, it also reduces food intake and improves glucose toler-
ance. It therefore appears that together these result in balancing glucose 
metabolism. 

4.3. AVP and glucose metabolism-related disease in human 

While AVP appeared to improve glucose tolerance in animal exper-
iments, recent findings have revealed an independent association be-
tween plasma copeptin, which is a stable C-terminal portion of pre/pro- 
vasopressin peptide and is used for a surrogate marker for circulating 
AVP, and risk of diabetes. AVP levels were indirectly measured in some 
studies, perhaps explaining the discrepancy, and raising a question 
about whether copeptin is an appropriate surrogate for AVP in diabetes. 

In human, the mean basal plasma AVP level in the patients with 
diabetes mellitus was significantly higher than control subjects [109]. 
Many clinical studies have suggested that high blood AVP levels, or high 
blood copeptin levels, could contribute to type 2 diabetes mellitus and 
metabolic syndromes [110–113]. In addition to its correlation with type 
2 diabetes mellitus and metabolic syndrome, higher blood copeptin 
levels are also associated with high fat intake, lower physical activity 
and lower socio-economic status. Plasma copeptin is also associated 
with the presence and severity of nonalcoholic fatty liver disease and 
steatohepatitis (NAFLD/NASH) [114,115]. Another study has shown 
that the amount of daily water intake was negatively associated with the 
risk of developing hyperglycemia or type 2 diabetes mellitus in a 9-year 
follow-up study [116]. Baseline plasma copeptin was also positively and 
independently associated with the later incidence of microalbuminuria, 
abdominal obesity, and hypertension in a 15.8-year follow-up study 
[117]. Enhörning and colleagues have suggested that, specifically in the 
patients with diabetes, copeptin could predict heart disease and death 
therefore it could be potential target for diabetic heart disease and death 
[118]. Plasma copeptin level is higher not only in patients with type 2 
diabetes mellitus but also in patients with type 1 diabetes mellitus [119]. 
A recent study has revealed that copeptin did not correlate with markers 
of insulin resistance in type 1 diabetes mellitus but strongly correlates in 
non-type 1 diabetes mellitus [120]. Plasma copeptin levels were lower in 
individuals with bipolar disorders in comparison to healthy controls. 
Interestingly, there were significant interactions between plasma 
copeptin on β-cell function and plasma leptin levels only in the subjects 
with bipolar disorders but not in healthy controls [121]. Canivell and 
colleagues have shown that age and apparent 11β-hydroxysteroid de-
hydrogenase type 2 (11β-HSD2) activity modulate the association of 
copeptin with insulin resistance but not metabolic syndrome nor type 2 
diabetes mellitus [122]. 

Plasma basal copeptin is higher in males in comparison to females, 
though the clinical significance has not been clarified yet. Stronger as-
sociation has been reported in women than in men between baseline 
plasma copeptin and the incidence of type 2 diabetes mellitus [123]. On 
the contrary, Then and colleagues have reported that plasma copeptin 
was associated with type 2 diabetes mellitus in men but not in women 
[124]. Copeptin was also significantly associated with an increased risk 
of type 2 diabetes mellitus in older men, which was partly mediated 
through lower insulin sensitivity [125]. Dabrowski and colleagues have 
studied if plasma copeptin could be a useful biochemical marker of in-
sulin resistance in pregnant women with early and late manifestation of 
gestational diabetes mellitus. According to their study, serum copeptin 
concentration was not useful to discriminate between early and late 
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onset of gestational diabetes mellitus [126]. 
As well as the effects on lipid metabolism, it is speculated that AVP 

may play a differential role on glucose metabolism between males and 
females. Interestingly, males are more likely to develop elevated fasting 
glucose levels, whereas females are more likely to develop impaired 
glucose tolerance [127]. These may be caused by effects of gonadal 
hormone-dependent and -independent sex differences in regional adi-
pose tissue distribution, production of cytokines and adipokines, hepatic 
gluconeogenesis and glycogenolysis, and glucose uptake by skeletal 
muscle [128]. 

Genetic epidemiology of AVP and its receptors in metabolic disorders 
has also been investigated in human. For example, significant associa-
tions were observed between the tagSNPs of the AVP gene (CC genotype 
of rs6084264, the TT genotype of rs2282018, the C-allele of rs2770381, 
and the CC genotype of rs1410713) and the incidence of hyperglycemia 
and decreased insulin sensitivity [129]. T-allele of rs1042615, which is a 
tagSNP in the AVP receptor V1a gene, was associated with an increased 
prevalence of type 2 diabetes mellitus in subjects with a high fat intake 
or who are overweight [130]. A major A-allele of rs35810727, a tagSNP 
in the AVP receptor V1b gene, was associated with elevated body mass 
index (BMI), waist, and type 2 diabetes mellitus [131]. Thus, genetic 
variance of AVP and its receptors might contribute, at least in part, to 
develop metabolic disorders, including obesity, overweight, and type 2 
diabetes mellitus. 

According to these studies, modifying the AVP system could be a 
potential therapeutic target for glucose metabolism-associated disease 
in patients. 

5. AVP and circadian rhythm 

The SCN of the hypothalamus contains the master circadian pace-
maker, which is mainly synchronized by light. AVP is produced in the 
SCN shell, which is the dorsomedial part of the SCN [27]. Besides 
AVP-producing neurons in the shell, there are vasoactive intestinal 
peptide (VIP)-producing neurons and gastrin releasing peptide 
(GRP)-producing neurons in the core, the ventrolateral part of the SCN. 
The afferents from the hypothalamus and limbic system terminate 
mainly in the SCN shell [132]. 

Daily expression pattern of heteronuclear (hn) AVP, which is an 
indicative of gene transcription, peaked at zeitgeber time (ZT)1 and ZT5, 
then decreased to undetectable levels at ZT17, while AVP mRNA peaked 
at ZT5 and ZT9 in the SCN [133]. Daily expression pattern of these 
mRNA is very similar to that of period 1 (Per1) gene [133]. AVP neurons 
in the retinal ganglion cells were also activated by light exposure [134]. 
These indicate that the gene expression of AVP in the SCN was 
up-regulated by light exposure. 

It is important to discuss the effects of AVP on circadian rhythmicity, 
as circadian activity could be one of the major factors that impacts 
feeding timing, amount, and/or metabolism. AVP concentration in the 
cerebrospinal fluid (CSF), but not in the blood, reaches at a peak in the 
morning [135–137]. For example, with regard to body fluid homeosta-
sis, Gizowski and colleagues have demonstrated that, using optogenetic 
technique in mice, anticipatory thirst was driven by excitatory pepti-
dergic neurotransmission mediated by AVP release from the SCN [138]. 
We have previously shown, in a transgenic rat line, that chemogenetic 
activation of AVP neurons at the start of the dark period induced aber-
rant behavior, and affected core body temperature and food intake [17], 
whereas no effect was found when stimulating these neurons in the light 
phase. In human, light exposure early in the dark period shifted the 
circadian rhythm backward, whereas light exposure late in the dark 
period shifted the circadian rhythm forward [139]. Indeed, light expo-
sure acutely suppressed food intake through SCN AVP neurons via SCN 
AVP - PVN oxytocin pathway [140]. Thus, it is speculated that light 
exposure does stimulate AVP neurons in the SCN in addition to syn-
chronizing SCN neurons. 

Circadian phase-shift (locomotor activity, body temperature, and 

clock gene expression) was immediately re-entrained in V1a and V1b 
receptor double knockout mice [51]. This indicates that an animal 
model which loses AVP-mediated inter-neuronal communication ap-
pears to be resistant to light/dark environmental perturbation, such as 
jet lag. In other words, inter-neuronal communication, which is medi-
ated by AVP, is crucial for maintaining normal circadian rhythm. They 
also demonstrated that, in wild-type mice, pharmacological blockade of 
V1a and V1b in the SCN resulted in accelerated recovery from circadian 
phase-shift. This suggests the AVP signaling may be a potent therapeutic 
target for management of circadian rhythm misalignment, which would 
also manage metabolic disorders. 

Because ubiquitous AVP knockout in mice is fatal, development of 
SCN-specific AVP knockout mice would be useful for elucidating further 
mechanism of AVP in the SCN. 

Interestingly, some characteristics of the circadian system and body 
weight regulation differ between males and females in human. For 
example, circadian misalignment disrupts energy balance in females and 
males through different pathways; females had more disturbances in the 
energy homeostasis process, including a decrease in the satiety hormone 
and an increase in hunger hormone, while males had elevated cravings 
for energy-dense and savory foods [141]. Base on the results from the 
animal experiments, it is tempting to speculate that these differences 
between the male and female response to circadian misalignment may 
be partly due to sexually dimorphic neuroanatomical distribution of 
AVP neurons and their dendrites. 

6. AVP and the HPA axis 

When an animal encounters a stressful situation, either real or 
perceived, a rapid activation of the HPA axis ensues [142,143]. Such 
stressors span a diverse range, from cognitive stress (for example, an 
unexpected loud noise or a short period of inescapable restraint) to 
physiological stress (for example hypoglycemia) to immunological stress 
(for example infection). The key site that integrates the neuroendocrine 
response to stress is the hypothalamic paraventricular nucleus (PVN), 
which is comprised of two regions termed the magnocellular (mPVN) 
and parvocellular (pPVN) subdivisions. While the mPVN and supraoptic 
nucleus (SON) comprise the neurohypophysial system, which is the 
major source of AVP and Oxytocin released into the circulation from 
neurons terminating in the posterior pituitary, the pPVN is the main 
source of the primary HPA effector molecule CRH. 

It is however important to note that approximately 50 % of pPVN 
CRH neurons also express AVP [144]; and that a stress such as acute 
restraint not only increases the levels of CRH but also increases the levels 
of AVP mRNA in these neurons [145]. Such restraint stress has been 
further shown to increase AVP synthesis in the pPVN, its accumulation 
in the median eminence, and its release into the hypophyseal portal 
system [145,146]. In contrast, AVP mRNA expression in the mPVN and 
the SON remains unaffected by the same stressor [147], highlighting 
region-specific differences in transcriptional control. It should also be 
noted that negative feedback mechanisms are not exclusively associated 
with transcriptional inhibition, but also directed at CRH/AVP peptide 
production and/or secretion. Fig. 2 shows an overview schematic of the 
HPA axis response to stress, with the feedforward arm of the response 
mediated by CRH and AVP. Negative feedback is subsequently directed 
at both CRH and AVP in pPVN neurons [146], and there is even some 
evidence for preferential inhibition of AVP compared with CRH [24,147, 
148]. GC inhibition is thought to act at multiple sites, inhibiting AVP 
secretion by direct actions on pPVN neurons, and indirectly by modi-
fying the activity of neural pathways, with GABAergic and gluta-
matergic afferents to the parvocellular neurons [149,150]. GCs can also 
induce the release of endogenous cannabinoids, which can mediate 
rapid indirect, non-genomic GC feedback in parvocellular neurons 
[151]. 

Direct transcriptional inhibition of AVP by GCs has been shown to 
depend upon an active GC response element (GRE) within the AVP gene 
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promoter [148], and further found to be independent of synaptic 
transmission in studies conducted in hypothalamic organotypic cultures 
[149], leading to the conclusion of direct inhibition of AVP gene tran-
scription by GCs. Therefore, while it is widely accepted that 
non-genomic GCs actions are likely to mediate most rapid feedback ef-
fects [150], the direct inhibitory effects on CRH and AVP synthesis more 
likely account for long term feedback inhibition. 

Although CRH is recognized as the primary ACTH secretagogue, it 
has been demonstrated that AVP can play a compensatory role in 
maintaining HPA activity in the absence of CRH. In elegant experiments 
using CRH and Crhr1 knockout mouse models, the intact vasopressin 
system was found to be sufficient to maintain adequate HPA activity for 
survival, although only after lung maturation has been completed with 
exogenous GC treatment [151–153]. Furthermore, consistent with the 
proposed compensatory role of AVP, a selective GC-dependent increase 
in the hypothalamic vasopressin system was found in the Crhr1 
knockout mice [154]. 

There is also considerable evidence that AVP acts synergistically 
with CRH to enhance ACTH secretion [155]. AVP deficient Brattleboro 
rats have a blunted corticosterone response to some but not all stressors 
[156,157], while elegant studies using immuno-neutralization of AVP 
also reported a blunted HPA response to a range of stressors including 
restraint, insulin-induced hypoglycemia and lipopolysaccharide 
[158–160]. Studies, where pituitary portal blood was sampled, have 
been able to show that AVP is released preferentially over CRH in some 
cases, including insulin-induced hypoglycemia [161–170]. 

There is strong evidence that AVP may become the dominant ACTH 
secretagogue in some chronic stress situations [171,172]. In particular, 
when the same type of stressful stimuli is repeated over a number of 
days, HPA axis desensitization leads to diminished stress responsiveness 
as an adaptative mechanism. This adaptive response appears to be 
largely dependent upon AVP and the corticotroph-expressed V1b re-
ceptor. For example, repeated restraint stress in rats continues to induce 
elevated AVP but not CRH expression in pPVN CRH-containing neurons 
[173]. Acute restraint following repeated restraint results in a rapid 
increase in AVP- but not CRH-hnRNA in the pPVN [174]. Finally, 
chronically restrained rats are able to respond to exogenous AVP treat-
ment with increased ACTH levels, while exogenous CRH treatment has 
no effect on their ACTH levels [175]. In pituitary corticotrophs, both 
Crhr1 and V1b receptor are activated and undergo stress induced reg-
ulatory variations, but only the changes in V1b receptor levels are 
regulated in a manner that mirrors pituitary ACTH responsiveness [41]. 

Information gleaned from V1b receptor knockout mice highlight 
specific differences found with different types of stress exposure. One 
line of V1b receptor knockout mice exhibited significantly reduced 
ACTH and adrenal GC responses to the forced swim stress test [176] 
whereas another line of V1b receptor knockout mice exhibited normal 
adrenal GC response to the acute physical-psychological stress induced 
by the resident-intruder stress test [41] but significantly reduced ACTH 
response to a chronic homotypic stress paradigm of 14 daily inescapable 
restraint sessions [177]. Taken together, these groups’ data indicate that 
V1b receptor may be required for the normal pituitary and adrenal 
response to certain acute stressors, but only appears to play a role in 
maintaining pituitary corticotroph responsiveness during chronic stress. 
However, as potentially confounding compensatory mechanisms may 
sometimes arise in knockout mouse models, it will be important to assess 
the effects of modulating the AVP system with finer temporal control 
before we can fully understand the relative contribution of CRH and AVP 
in chronic stress, and particularly the consequent impact that any 
change in circulating GCs will have on metabolism and energy balance. 

7. GC regulation of metabolism and feeding behavior 

It has long been known that stress and GCs regulate metabolic [178, 
179] immunological [180] and cognitive processes [181,182] 
throughout the body and brain. Of particular relevance to the subject of 
this review, are the vast number of stress and GC-dependent effects on 
metabolism and energy balance, reviewed in [183,184]. Notably, the GC 
hormone is in its active form [185] and can regulate vast metabolic 
transcriptional networks [186] throughout metabolically active organs, 
including liver, adipose, skeletal muscle and pancreas [178]. The 
cognate glucocorticoid receptor (GR) is widely expressed throughout 
these tissues [187], therefore any AVP-dependent modulation of 

Fig. 2. The HPA axis. 
In response to stress, CRH neurons originating from the pPVN and projecting to 
the median eminence, release both CRH and AVP into the portal circulation 
reaching the anterior pituitary. Here, CRH and AVP bind and activate the CRH- 
type1 receptor (Crhr1) and the V1b receptor respectively; the two cognate re-
ceptors that are expressed on corticotrophes within the anterior pituitary and 
stimulate ACTH secretion. ACTH travels through the peripheral ACTH circu-
lation to reach the adrenal cortex where it induces steroidogenesis, effectively 
increasing secretion of glucocorticoid hormone (corticosterone in rodents and 
cortisol in humans). In turn, glucocorticoids enter the circulation and travel 
back to the pituitary and hypothalamus to act in a classical negative feedback 
loop to prevent further glucocorticoid release, effectively terminating the stress 
response Created with BioRender.com. 
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circulating GC levels as outlined above has the potential for a significant 
albeit indirect impact on metabolism and energy balance. For example, 
as one of the primary GC effects is to supply glucose to the body in 
conditions of acute stress or reduced food intake [187], GCs increase 
hepatic glucose production [178,188], decrease peripheral glucose up-
take into muscle and adipose tissue [189,190] and increase breakdown 
of fat and muscle to provide additional substrates for glucose production 
[187,191,192]; as well as inhibit insulin release from pancreatic β-cells 
[193]. 

GCs also have effects on feeding behaviour. In contrast to AVP’s 
anorexigenic actions, GCs are orexigenic. In an elegant study using 
human volunteers, high cortisol secretion in response to an acute labo-
ratory stressor was also related to voluntary increase in eating sweet, 
high-fat food after the stressor [194]. These types of associations be-
tween stress-induced GCs and increased feeding behaviour have been 
appreciated for decades, but elucidation of the mechanism whereby 
feeding rats highly palatable foods such as lard and sugar mediates 
downregulation of CRH in the amygdala, part of the neural stress cir-
cuitry [195,196] helps to explain the role of comfort food in stress 
coping behavior via HPA axis negative feedback mechanisms. 

Therefore, it is important to understand how AVP can influence GC 
secretion as well as how the subsequent interplay between the two 
contribute to regulation of metabolism and energy balance. 

8. Perspectives and conclusion 

A role of AVP in metabolism has been elucidated by many ambitious 
studies. AVP itself has been demonstrated to exert direct actions on 
glucose and lipid metabolism. However, it is further speculated that 
indirect actions of AVP - for example via hemodynamic effects on adi-
pose tissue, and via modulation of circadian rhythms and the HPA axis - 
will also exert significant influence on metabolic regulation. 

In today’s modern society, sometimes described as a “nightless 
castle”, human health is being negatively impacted. We are exposed to 
light at all times of day and night; we are exposed to many stressors both 
physical and psychological. 

Focusing on circadian rhythmicity, short term disruption causes jet 
lag-like symptoms whereas longer term disruption can lead to diverse 
metabolic disorders, including obesity, metabolic syndrome, type 2 
diabetes, and cardiovascular diseases. Cancer risk, depression, and 
cognitive impairment are also increased by chronic circadian disruption 
[182]. A large number in the population are affected by chronic circa-
dian disturbance, including day/night time rotation shift workers, pilots 
and flight crews, as well as patients with chronic sleep disturbance. 
Focusing on stress, the adaptive acute stress response becomes mal-
adaptive when the stressful situation becomes chronic [197]. Increasing 
tendencies of overeating highly palatable ‘comfort food’ for coping with 
chronic stress [194–196,198] is exacerbated by the metabolic effects of 
chronically elevated GCs [178], and most likely a contributing factor in 
the WHO 2021 World Health Organization’s reported current obesity 
epidemic, with the associated increase in incidence of metabolic syn-
drome and Type 2 Diabetes. 

As AVP is intrinsically associated with both circadian rhythm and GC 
regulation, as well as exerting direct effects on feeding behavior and 
metabolic regulation in its own right, further elucidation of the under-
lying mechanisms of AVP control will contribute to the identification of 
potential therapeutic targets for the treatment of metabolic disorders. 
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